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ABSTRACT

In this paper mathematical modelling of a vehicle crash based on a lumped parameter model is studied. The vehicle is modelled
as a single mass connected to a non-linear spring and damper system. The characteristics of the non-linear behaviour of the model
is identified with a hybrid Firefly/Harmony Search optimization algorithm that minimizes the deviation between experimental test
data and a simulated response. The experimental data is taken from three crashes of an identical vehicle that crashes into a wall at
different initial velocities. The aim of this paper is to find a piecewise-linear function for the spring and damper coefficients which
is scaleable to reconstruct the three different experimental crashes at different impact velocities. Numerical results are provided to
illustrate the applicability of the proposed algorithm. Three data sets will be used for parameter identification and a fourth data set
will be used for verification.
Keywords: Vehicle crash, crashworthiness, LPM, parameter identification, simulation, Firefly/HS

INTRODUCTION

Numerous studies have been devoted to the area of vehicle crashworthiness to improve the safety for occupants and
pedestrians in the last decade. In order to test a vehicle prototype on how it reacts to a crash, and how it affects occu-
pants or pedestrians, a physical crash test of the vehicle is often constructed. This however requires trained personnel,
a facility, measurement devices, sensors, a great deal of planning and a vehicle. This is a costly and time consuming
process, but is the most reliable method for testing the crashworthiness of a vehicle. The amount of crash tests needed
for a given prototype could however be reduced. If an accelerometer is placed at the center of mass of the vehicle and
its acceleration is measured during the crash, that data could be used to create a mathematical model of the vehicle and
tune its parameters based on the experimental crash response. If the mathematical model is verified, it could be used
to simulate crashes on modified designs hence identifying the most promising version before staging a real crash.
In the literature, there are two general ways to make a model of a vehicle; Lumped ParameterModels (LPMs) and Finite
Element Method (FEM) Models. An LPM utilizes up to several masses connected with each other and surroundings
with springs and dampers. The masses are often determined by dividing the total mass of the vehicle into strategic
parts of the model. The spring and damper coefficients are estimated by using experimental crash data. Several studies
of crashworthiness used analytic methods and numerical optimization to tune the parameters for an LPM of the crash.
In [1] Elmarakbi et al. presented a new mathematical model to optimize the crashworthiness using vehicle dynamics
control systems. In [2], Pawlus et al. proposed a method for modelling a vehicle crash based on viscous and elastic
properties of the materials. In [3] Jonsén et al. presented a method for identifying a lumped parameter model of the
frontal bumper on a Volvo S40. In [4] Lu et al. established the LPV-ARMAX model for a vehicle crash in order to
calculate a single LPM that can handle any initial impact velocity. In [5] Pawlus et al. developed an LPM of a crash
consisting of two sets of mass-spring-damper systems, and verified the model from a vehicle crash in a pole. LPM
is often easier to model and their parameters are simpler identified than FEM models, but the results may not be as
accurate. FEMmodels are more accurate but time consuming to model and simulate because they usually contain more
accurate material specifications, stresses and deformation in the vehicle during a crash. In [6] the energy absorbed in
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a crash was used to optimize energy absorption by remodelling the motor room. In [7] an analytical method was pre-
sented to identify the critical velocity of a transverse rigid body impact on a steel column. In [8], Tang et al. presented
a new Black Box optimization algorithm that is used to optimize the frontal member of a vehicle in terms of energy
absorption. A different, but effective method of modelling a vehicle crash is shown by Zhao et al. in [9] where they
developed a novel adaptive neurofuzzy inference system (ANFIS-based) approach to reconstruct the kinematics of a
vehicle crash.
In this paper, a non-linear mathematical model for a vehicle crash scenario is obtained using three experimental crash
data sets. The main contribution of this paper is to find a scaling function between the response of three experimen-
tal data sets in order to make a mathematical model of the vehicle crash with only the initial velocity as input. The
connection between the crashes is to be found as a function of the initial velocity. After parameters of the model are
identified, a fourth experimental data set is used to verify the model and its performance.

METHOD

Experimental data sets

The experimental data used in this article is of a 1986 model Ford Taurus with a mass of m = 1591kg. This car
was crashed into a wall at different impact velocities. For parameter identification, three crashes occurring at an im-
pact velocity v0 = {15.5, 32.4 and 48.3}km/h are used. To verify the model, a similar crash at impact velocity of
v0 = 29.9km/h is used. An accelerometer was placed at the centre of mass in each of the crashed cars, which logged
the acceleration in all three directions. The experimental data is the acceleration of these three vehicles in the forward
direction (facing the wall). It is important that the accelerometer was placed in the centre of mass to conform to New-
ton's laws of motion. This article uses this principle law to develop a mathematical model for the crash, and this law
breaks if the acceleration is measured somewhere else than the centre of gravity. Possible sources of an error in these
data sets are:

1. The logging device may be experiencing noise from several sources, which could potentially create errors.

2. The centre of gravity of the car may move because of the deformations, which could lead to inaccurate measure-
ments if the accelerometer moves outside the centre of mass.

Since the experimental data sets downloaded from NHTSAs web page [10] contain raw acceleration data, they are
filtered before they are analysed. The raw acceleration data is filtered using a CFC180 filter. This filter is a low-pass
filter with a -3dB limit frequency at 300Hz. The requirement for this filter is a sampling frequency of at least 1800Hz.
The measuring frequency of the raw data set is 8000Hz which means that the time step between each measurement
is dt = 1.25ms. For convenience, all time simulations are carried out with this time step, which is small enough for
accurate forward Euler time integration.
The time scope of the experimental data sets are adjusted to only include the time from impact until the vehicle is posi-
tioned at the origin. Afterwards the adjusted acceleration data is time integrated using a forward Euler time integration
formula to obtain the velocity and position of the car. This time integration is given in Equations (1) and (2):

v(t) =

∫
a(t) · dt (1)

s(t) =

∫
v(t) · dt (2)

where a(t) is the acceleration of the vehicle, v(t) is the velocity of the vehicle and s(t) is the position of the vehicle.
Before the acceleration is integrated, the start and end time is adjusted to only include the start of the crash pulse up
until the rebound position is 0m. This is done to remove any position change before the car hits the wall. Figure
1 shows the filtered and adjusted acceleration for the first crash and its velocity and position. The red curve shows
acceleration in per gravity constants (−9.81m/s2), the green line shows velocity in km/h and the blue line shows the
position of the car in cm. These units are used instead of SI units in order to fit all three graphs on a single y-axis.

Mathematical model
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Figure 1: Experimental crash data for the first test, v0 = 15.5km/h.

The mathematical model under consideration is a mass connected to a non-linear spring and damper system. The
model is shown in Figure 2a and the differential equation for the system is represented as:

mẍ+ c(|x|, v0)ẋ+ k(|x|, v0)x = 0 (3)

where m is the mass of the vehicle, x is the position of the simulated vehicle relative to its impact position, ẋ and ẍ
is the speed and acceleration of the simulated vehicle respectively, c(x, v0) is the damping coefficient of the vehicle
as a function of the current displacement and initial velocity (v0) of the vehicle, k(x, v0) is the spring coefficient of
the crash as a function of the current displacement and initial velocity of the vehicle. Remember s, v and a represents
the position, velocity and acceleration of the real experimental crash, while x, ẋ and ẍ represents the position, velocity
and acceleration of a simulated crash.
This non-linear model is used in favour of connecting several linear mass-spring-damper systems in order to keep a
simple differential equation. It is also simpler to increase the complexity of the model by modifying the non-linear
spring and damper characteristics instead of dividing the car mass into additional mass-spring-damper systems. The
characteristics of the non-linear spring and damper are shown in Figure 2b. This figure shows two arbitrary piecewise
linear functions; one for the non-linear spring characteristics ks(|x|) and one for the non-linear damper cs(|x|). These
spring and damper characteristics are functions of the absolute value of the position of the vehicle. C is the maximum
displacement of the car (maximum crush) during the crash. p1,s, p2,s, p3,s and p4,s are percentages of the maximum
crush. k1,s, k2,s, k3,s and k4,s are the heights of the piecewise linear functions in the spring setpoint function and
c1,sc2,s, c3,s and c4,s are the heights of the damper setpoint function.
As these spring and damper characteristics are setpoint functions, they have to be scaled to fit a certain crash scenario.
Equations (4), (5) and (6) show the relationship between the setpoint functions and the actual spring and damper
functions used in a simulation:

k(|x|, v0) = Sk(v0) · ks(|x|) (4)
c(|x|, v0) = Sc(v0) · cs(|x|) (5)

pi = Cest(v0) · pi,s i ∈ [1, 4] (6)

where k(x, v0) is the spring function, c(ẋ, v0) is the damper function and pi, i ∈ [1, 4] are breakpoints for the spring
and damper functions. Sk(v0) and Sc(v0) are scaling functions which will scale the spring and damper to fit a crash
with a given initial velocity. A representation of this scaling function is shown in Figure 2c. A separate scaling function
is created for the spring and damper functions.
Cest(v0) is an estimate of the maximum displacement of the car in a given crash. Since the maximum crush is never
known before a simulation, it is estimated in order to limit the spring and damper characteristics. This estimate is a
function of the initial velocity, and it is created by curve fitting the maximum crush of all three experimental data sets
to a function. This curve fitting is shown in Figure 2d where the blue curve shows the curve fitted function, and the red
dots shows the maximum crush of the three experimental crash test data sets. This curve fitting returned the following
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(d) Curve fitting results to make a Cest function.

Figure 2: Mathematical model of the vehicle crash.

function:
Cest(v0) = 0.04992 · e0.1288·v0 + 0.09263 (7)

where e is Euler's number. The goodness of the fit is given by an R-square which was returned as 1. This estimate is
used before every simulation to set the last breakpoint on the spring and damper characteristics. One issue with this
curve fitted equation is that it doesn't start with zero maximum crush at zero initial velocity. However, the purpose of
this function is to use it in between the given initial velocities.

Hybrid Firefly/Harmony Search algorithm

The lumped parameter model is optimized by using a hybrid Firefly/Harmony Search algorithm [11]. The Firefly
algorithm is a nature inspired meta heuristic search algorithm that is used to find near-optimal solutions of a global
optimization problem. The algorithm was written by Yang and He in 2008, and a recent result in [12] explained the
algorithm and its advantages compared to other swarm intelligence algorithms. The algorithm itself is based on the
attraction between fireflies, and the core of the algorithm is based on the movement of fireflies that are attracted by
each other. In this context, a firefly is a vector containing parameter values, and the upper and lower bounds of each
parameter determines the field in which these fireflies can move within. Fireflies are unisex and will be attracted
to any firefly that shines brighter than itself. The light intensity of a given firefly is determined by the value of the
cost/objective function of its parameter values. In general, this means that a firefly with a high light intensity (a good
objective value) will attract more fireflies to search the same area for possible local minimas. This allows the fireflies
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Table 1: Optimizeable parameters and upper and lower bounds.

Parameter Lower bound (Lb) Upper bound (Ub) Unit
k1,s 0 100000 N/m
k2,s 0 100000 N/m
k3,s 0 100000 N/m
k4,s 0 100000 N/m
c1,s 0 100000 Ns/m
c2,s 0 100000 Ns/m
c3,s 0 100000 Ns/m
c4,s 0 100000 Ns/m
p1,s 0 1 -
p2,s 0 1 -
p3,s 0 1 -
p4,s 0 1 -
h1,d 0 4.3 -
h2,d 0 9 -
h3,d 0 13.41 -
h1,k 0 4.3 -
h2,k 0 9 -
h3,k 0 13.41 -

to divide in groups in the parameter field to exploit several local minimas. This allows the algorithm to quickly search
a wide range of parameter values, as well as finding a near optimal solution to the problem. For for information of the
Firefly algorithm, see Ref. [12].
There is only a movement if firefly i is attracted to firefly j, but nothing happens in the original Firefly algorithm if
it is not attracted. The inclusion of a Harmony Search (HS) under those circumstances changes that by performing a
Harmony Search mutation on the superior firefly, i, while the parameter values belonging to the other fireflies are used
as harmony memory. If the objective value of the new parameter set is better than the worst firefly, its parameters are
swapped with the new parameters coming from the harmony search mutation. This allows for fireflies in bad positions
to be reset. More information about the Harmony Search algorithm is found in Ref. [13].

Objective Function

The experimental data sets are used to optimize the design parameters for the mathematical model in. A list of param-
eters for the optimization algorithm to determine and their corresponding upper and lower bounds are shown in Table
1. The objective function value, or the cost, is the sum of the squared error between the three simulated responses and
their corresponding experimental crash data set. For crash n the squared error is calculated with Eq. (8):

En =
|xn(t)− sn(t)|T |xn(t)− sn(t)|

L(t)
· 1000, n ∈ [1, 3] (8)

where L(t) is the amount of data points in the time vector t, xn(t) is a vector containing the simulated displacement
for crash n and sn(t) is a vector containing displacement of the experimental crash test n. The reason for dividing by
L(t) and multiplying by a thousand is to make each crash test data set count equal on the total error, as neither of the
experimental crash tests have the same number of datapoints. The total error (the objective value) is calculated as:

Etot =
3∑

n=1

En (9)
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Table 2: Optimized values for each parameter.

Parameter Value Unit Parameter Value Unit
k1,s 28,668 N/m p1,s 0.247 -
k2,s 55,478 N/m p2,s 0.459 -
k3,s 86,759 N/m p3,s 0.482 -
k4,s 99,668 N/m p4,s 0.931 -
c1,s 60 Ns/m h1,d 1.871 -
c2,s 13,016 Ns/m h2,d 4.017 -
c3,s 13,043 Ns/m h3,d 3.587 -
c4,s 22,731 Ns/m h1,k 4.285 -
h2,k 6.084 - h3,k 5.932 -

The objective is to minimize the error between a simulated response and experimental test data, Etot.

Constraints

The firefly/HS algorithm allows for both linear and non-linear equality and inequality constraints. The non-linear
constraints are handled by using a Penalty Method, which punishes the objective value of a firefly if the constrains are
violated. The penalty method is very effective for swarm optimization algorithms. If a non-linear constraint is violated
by a firefly, its objective value is added with the degree of violation squared multiplied by a large number like 1015.
The light intensity of that firefly is therefore low and it will easily move out of the constraint by being attracted to
almost every other firefly. The linear constraints are shown as bounds in Table 1. The non-linear inequality constraints
used are given by Equations (10) and (11):

p2,s ≥ p1,s (10)
p4,s ≥ p3,s (11)

RESULTS

The firefly/HS optimization algorithm is run with the following parameter values: n = 25; β0 = 1; alpha0 = 0.01;
delta = 0.99931;HMCR = 0.85; PAR = 0.3; bw = 0.02. The resulting parameter values are shown in Table 2 and
the resulting objective value became Etot = 0.0984 after 268 epochs. The percentage of the total objective value each
crash test amount to is 10.32%, 63% and 26.62% for crash numbers 1, 2 and 3 respectively. A comparison between a
simulated response and their corresponding experimental data sets are shown for the three crashes on Figures 3a, 3b
and 3c. The verification of the model with the impact velocity v0 = 29.9km/h is shown in Figure 3d. Here, the sta-
pled lines show the experimental crash test data acquired from NHTSA, and the continuous lines shows the simulated
response from the mathematical model. For both cases, the red lines show acceleration in per gravity constant (-9.81
m/s2), the green lines show velocity in km/h, and the blue lines show displacement in cm.

DISCUSSION

In this paper a mathematical model of a vehicle crash test was identified. The model consisted of a mass connected to
a non-linear spring and damper system and the parameters were found by optimizing the squared error between the dis-
placement of the model and the experimental data. This model is used to reproduce the three experimental crashes with
little deviation. A fourth experimental data set is used to verify the models integrity, and results from using the model
on this data set is shown in Figure 3d. This figure shows that the model does a good job of reproducing the crash, but it
is not perfect. There are large deviations around the maximum displacement and during the rebound phase. However
the parameter identification algorithm also struggled to fit the crash at v0 = 32.4km/h shown in Figure 3a which is a
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(a) Parameter identification test no. 1 at v0 = 15.5km/h.
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(b) Parameter identification test no. 2 at v0 = 32.4km/h.

0 0.05 0.1 0.15 0.2

−10

0

10

20

30

40

50

x
,s

[c
m
],
ẋ
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(c) Parameter identification test no. 3 at v0 = 48.3km/h.
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(d) Model verification test at v0 = 29.9km/h.

Figure 3: Results and comparisons between simulated response and experimental crash data sets.

similar impact velocity as the verification data set. This indicates that a single non-linear mass-spring-damper system
is not complex enough to model a vehicle crash at different initial velocities.
It was shown that the hybrid Firefly/Harmony Search optimization algorithm is able to find a good solution to the opti-
mization problem despite having many parameters to tune. This is mainly because the Harmony Search mutation adds
possibilities to try completely new parameter values which increases the diversity drastically. Therefore this algorithm
is suitable for large optimization problems with many local minimas. For future work, the model should be improved
to remove the remaining deviations from the experimental data.
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